Optics - Electromagnetic wave - Accelerated charge

March 19, 2012

Light is an electromagnetic wave. The source of this wave is accelerating charges. Calculate the wavelength of the radiation emitted from an electron shaken up and down 3 meters every femtosecond.

Solution: Using the vacuum dispersion relation we can calculate the wavelength,

$$c = \lambda \nu$$

$$\lambda = \frac{c}{\nu} = \frac{3 \cdot 10^8 \frac{\text{m}}{\text{s}}}{1 \cdot 10^{15} \text{s}^{-1}} = 3 \cdot 10^{-7} \text{m}$$

Is it visible?

No, but it is close. It is in the infrared range.

What is the amount of power radiated?

Use the Larmor formula for radiated power.

$$P = \frac{\mu_0 e^2 a^2}{6\pi c}$$

we get the acceleration from harmonic analysis. The maximum acceleration is $a=A\omega^2$, where $A=3\mathrm{m}$ and $\omega=2\pi1\cdot10^{15}\mathrm{s}^{-1}$.

$$P = \frac{\left(4\pi \cdot 10^{-7} \frac{\text{H}}{\text{m}}\right) \left(1.602 \cdot 10^{-19} \text{C}\right)^2 \left(3\text{m} \cdot \left(2\pi 1 \cdot 10^{15} \text{s}^{-1}\right)^2\right)^2}{6\pi \left(3 \cdot 10^8 \frac{\text{m}}{\text{s}}\right)} = 8 \cdot 10^{10} \frac{\text{J}}{\text{s}}$$