Thermodynamics problem - Ideal gas law - Tire with a leak

March 19, 2012

A car tire is pressurized in the morning at a temperature of $20^{\circ} \mathrm{C}$ to 2 atm . By afternoon at a temperature of $35^{\circ} \mathrm{C}$ the tire pressure has changed to 2.1 atm , but the volume has decreased by 2%. Use the ideal gas law to show that the reason this happened is because of a leak in the tire.

Solution: Using the ideal gas law which is $P V=n R T$ we can make use of the gas constant R which is not changing during this process and claim

$$
\begin{gathered}
\left(\frac{P V}{n T}\right)_{\text {morning }}=\left(\frac{P V}{n T}\right)_{\text {afternoon }} \\
\frac{2 \mathrm{~atm} \cdot V}{n \cdot 293 \mathrm{~K}}=\frac{2.1 \mathrm{~atm} \cdot 98 \mathrm{~V}}{n^{\prime} \cdot 308 \mathrm{~K}} \\
\frac{2 \mathrm{~atm}}{n \cdot 293 \mathrm{~K}}=\frac{2.1 .1 \mathrm{~atm} \cdot 98}{n^{\prime} \cdot 35^{\circ} \mathrm{C}}
\end{gathered}
$$

Solve for the ratio of initial to final moles

$$
\frac{n^{\prime}}{n}=\frac{293 \mathrm{~K} \cdot 2.1 \mathrm{~atm} \cdot 98}{2 \mathrm{~atm} \cdot 308 \mathrm{~K}}=.978886 \approx .98 \sqrt{ }
$$

There is only 98% of air left, it lost some air to a leak.

